43 research outputs found

    A Dynamical Systems Approach to Characterizing Brain–Body Interactions during Movement: Challenges, Interpretations, and Recommendations

    Get PDF
    Brain–body interactions (BBIs) have been the focus of intense scrutiny since the inception of the scientific method, playing a foundational role in the earliest debates over the philosophy of science. Contemporary investigations of BBIs to elucidate the neural principles of motor control have benefited from advances in neuroimaging, device engineering, and signal processing. However, these studies generally suffer from two major limitations. First, they rely on interpretations of ‘brain’ activity that are behavioral in nature, rather than neuroanatomical or biophysical. Second, they employ methodological approaches that are inconsistent with a dynamical systems approach to neuromotor control. These limitations represent a fundamental challenge to the use of BBIs for answering basic and applied research questions in neuroimaging and neurorehabilitation. Thus, this review is written as a tutorial to address both limitations for those interested in studying BBIs through a dynamical systems lens. First, we outline current best practices for acquiring, interpreting, and cleaning scalp-measured electroencephalography (EEG) acquired during whole-body movement. Second, we discuss historical and current theories for modeling EEG and kinematic data as dynamical systems. Third, we provide worked examples from both canonical model systems and from empirical EEG and kinematic data collected from two subjects during an overground walking task

    Speckleplethysmographic (SPG) estimation of heart rate variability

    Get PDF
    Heart rate variability (HRV), a class of metrics derived from variability in R-R intervals typically measured using electrocardiography (ECG), has implications for cardiovascular and neurological health1. Recently, HRV was used to track the recovery of athletes after exercise training due to its ability to noninvasively monitor the autonomic nervous system (ANS)2. Exercise training generally has a positive impact on the ANS by reducing resting heart rate and increasing cardiac vagal tone at rest3. However, overexertion from excessive workout sessions can counteract the benefits of regular exercise and reduce HRV4. Unfortunately, routine, remote ECG HRV monitoring is limited due to portability, cost, and loss of accuracy. Various groups have attempted to address the limitations of ECG monitored HRV by estimating HRV with simpler photoplethysmography (PPG) technology5. Transmittance PPG, the signal used in pulse oximetry, measures changes in intensity due to light absorption caused by the dilation and constriction of arteries and arterioles in the finger due to pulsatile blood flow. Alas, HRV approximated from PPG finger measurements loses accuracy due to significant peak time delays related to various factors such as arterial stiffness, vascular tone, and height6. Please click Additional Files below to see the full abstract

    Preliminary Research on a COVID-19 Test Strategy to Guide Quarantine Interval in University Students

    Get PDF
    Following COVID-19 exposure, the Centers for Disease Control (CDC) recommends a 10–14-day quarantine for asymptomatic individuals and more recently a 7-day quarantine with a negative PCR test. A university-based prospective cohort study to determine if early polymerase chain reaction (PCR) negativity predicts day 14 negativity was performed. A total of 741 asymptomatic students in quarantine was screened and 101 enrolled. Nasopharyngeal swabs were tested on days 3 or 4, 5, 7, 10, and 14, and the proportion of concordant negative results for each day versus day 14 with a two-sided 95% exact binomial confidence interval was determined. Rates of concordant negative test results were as follows: day 5 vs. day 14 = 45/50 (90%, 95% CI: 78–97%); day 7 vs. day 14 = 47/52 (90%, 95% CI: 79–97%); day 10 vs. day 14 = 48/53 (91%, 95% CI:79–97%), with no evidence of different negative rates between earlier days and day 14 by McNemar’s test, p \u3e 0.05. Overall, 14 of 90 (16%, 95% CI: 9–25%) tested positive while in quarantine, with seven initial positive tests on day 3 or 4, 5 on day 5, 2 on day 7, and none on day 10 or 14. Based on concordance rates between day 7 and 14, we anticipate that 90% (range: 79–97%) of individuals who are negative on day 7 will remain negative on day 14, providing the first direct evidence that exposed asymptomatic students ages 18–44 years in a university setting are at low risk if released from quarantine at 7 days if they have a negative PCR test prior to release. In addition, the 16% positive rate supports the ongoing need to quarantine close contacts of COVID-19 cases

    Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science

    Get PDF
    It is well documented that the majority of adults, children and families in need of evidence-based behavioral health interventionsi do not receive them [1, 2] and that few robust empirically supported methods for implementing evidence-based practices (EBPs) exist. The Society for Implementation Research Collaboration (SIRC) represents a burgeoning effort to advance the innovation and rigor of implementation research and is uniquely focused on bringing together researchers and stakeholders committed to evaluating the implementation of complex evidence-based behavioral health interventions. Through its diverse activities and membership, SIRC aims to foster the promise of implementation research to better serve the behavioral health needs of the population by identifying rigorous, relevant, and efficient strategies that successfully transfer scientific evidence to clinical knowledge for use in real world settings [3]. SIRC began as a National Institute of Mental Health (NIMH)-funded conference series in 2010 (previously titled the “Seattle Implementation Research Conference”; $150,000 USD for 3 conferences in 2011, 2013, and 2015) with the recognition that there were multiple researchers and stakeholdersi working in parallel on innovative implementation science projects in behavioral health, but that formal channels for communicating and collaborating with one another were relatively unavailable. There was a significant need for a forum within which implementation researchers and stakeholders could learn from one another, refine approaches to science and practice, and develop an implementation research agenda using common measures, methods, and research principles to improve both the frequency and quality with which behavioral health treatment implementation is evaluated. SIRC’s membership growth is a testament to this identified need with more than 1000 members from 2011 to the present.ii SIRC’s primary objectives are to: (1) foster communication and collaboration across diverse groups, including implementation researchers, intermediariesi, as well as community stakeholders (SIRC uses the term “EBP champions” for these groups) – and to do so across multiple career levels (e.g., students, early career faculty, established investigators); and (2) enhance and disseminate rigorous measures and methodologies for implementing EBPs and evaluating EBP implementation efforts. These objectives are well aligned with Glasgow and colleagues’ [4] five core tenets deemed critical for advancing implementation science: collaboration, efficiency and speed, rigor and relevance, improved capacity, and cumulative knowledge. SIRC advances these objectives and tenets through in-person conferences, which bring together multidisciplinary implementation researchers and those implementing evidence-based behavioral health interventions in the community to share their work and create professional connections and collaborations
    corecore